

AmplideX[®] PCR/CE TOMM40 Kit (RUO)

2500-0665

Types of Dementia

Alzheimer's

Deposits of the protein fragment beta-amyloid (plaques) and twisted strands of the protein tau (tangles)

Vascular

Occurs most commonly from blood vessel blockage

Lewy Bodies Lewy bodies are abnormal aggregations (or clumps) of the protein alpha-synuclein

Frontotemporal A mild to severe decrease in overall brain weight and atrophy of the frontal and temporal lobe

Alzheimer's Association. 2016 Alzheimer's disease facts and figures. Alzheimer's Dement. 2016 Apr;12(4):459-509.

Alzheimer's Disease Genetics

¹Campion D. *et al.* Am J Hum Genet. 1999;65:664–70; Brickell KL, *et al.* Arch Neurol. 2006;63:1307–11.

Apolipoprotein E (APOE) Identified as AD Risk Factor

Allele	٤2	£ 3	84
General Frequency	8.4%	77.9%	13.7%
AD Frequency	3.9%	59.4%	36.7%

- Three alleles: E2, E3, and E4
 - E2 considered protective for AD
 - E4 associated with increased risk of AD

Farrer et al Jama 1997; 278 (16): 1349-56

APOE Alone Unable to Predict AD Risk

Overall Risk:

- Depends on combination of risk factors
- Presence of one or more E4 alleles does NOT mean AD
- Lifetime risk still associated with family history
 - E4 negative does not remove 2-3x increased risk
- Varies based on age, gender, and ethnicity

TOMM40: Missing Piece For AD Risk

- Encodes Tom40, the translocase of the outer mitochondrial membrane pore subunit
- Mitochondrial Dysfunction: Early defect in LOAD pathogenesis and other age-related diseases
- Poly-T length repeats linked with LOAD

APOE + TOMM40 Poly T Improves the PPV of AD Risk Prediction?

Short (S; ≤19Ts) Long (L; 20–29 Ts) Very Long (VL; ≥30Ts)

M.W. Lutz et al. / Alzheimer's & Dementia: Translational Research & Clinical Interventions 2 (2016) 30-44

Association of APOE/TOMM40 with AD Development

Alzheimer's & Dementia: Translational Research & Clinical Interventions 2016 2, 30-44

Challenges of TOMM40 '523 Genotyping

AT Rich Region

- Challenging to amplify
- Hard to resolve (polymerase stutter and slippage)

Lack of Robust Standardized Assays

- Inaccurate results
- Inability to perform high throughput studies

Simple and Robust Test for Detection of *TOMM40* Poly T Repeats

AmplideX[®] PCR/CE TOMM40 Kit Enables Simple, Reliable TOMM40 Gene Research

Technology	Workflow	Performance
• Leverages proven	• < 3 hr DNA to result	Repeatable
AmplideX [®] chemistry for high homology sequences	 30 min Hands-on- Time Easy to interpret 	 Reproducible Accurate sizing w Single-Base Resolution

Simple workflow minimizes hands on time

- Calibrator for accurate sizing •
- Primer mix •
- PCR enzyme and buffers •

- Master mix composition •
- PCR cycling conditions •

Calibrator Enables Accurate Sizing

- Calculate mobility and correction factor (run or instrument specific)
- Use provided equation from protocol guide to calculate Poly T repeats

Accurate Sizing Enables Accurate Sample Categorization

A synthetic 48 mer was accurately sized

Single bp resolution allows ability to distinguish n,n+1 alleles

Compatibility with Different Sample Types

Sample Name	Blood	Buccal
F01	16/16	16/16
M02	16/34	16/34
M03	16/16	16/16
F04	16/22	16/22
F05	16/37	16/37
F06	16/29	16/29
M07	16/36	16/36
F08	16/16	16/16
M09	22/36	22/36
F10	16/38	16/38
M11	35/35	35/35
M14	16/36	16/36
M15	16/34	16/34
M18	16/34	16/34

*6 females and 8 males with matched blood and buccal samples

Inter-Operator and Multi-Day Runs Demonstrate Assay Reproducibility

Sample: L/VL, 29/36 alleles

Assay Tolerates Wide Range of DNA Input

Recommended assay input range = 5-100 ng

Simplified Workflow, Reliable Performance

